
ARTICLE

Global and regional importance of the direct dust-
climate feedback
Jasper F. Kok 1, Daniel S. Ward 2, Natalie M. Mahowald 3 & Amato T. Evan 4

Feedbacks between the global dust cycle and the climate system might have amplified past

climate changes. Yet, it remains unclear what role the dust–climate feedback will play in

future anthropogenic climate change. Here, we estimate the direct dust–climate feedback,

arising from changes in the dust direct radiative effect (DRE), using a simple theoretical

framework that combines constraints on the dust DRE with a series of climate model results.

We find that the direct dust–climate feedback is likely in the range of −0.04 to +0.02Wm −2

K−1, such that it could account for a substantial fraction of the total aerosol feedbacks in the

climate system. On a regional scale, the direct dust–climate feedback is enhanced by

approximately an order of magnitude close to major source regions. This suggests that it

could play an important role in shaping the future climates of Northern Africa, the Sahel, the

Mediterranean region, the Middle East, and Central Asia.
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M ineral dust is likely the most abundant aerosol type by
mass in the atmosphere1. It affects the climate system in
numerous ways, including by scattering and absorbing

radiation, serving as a nuclei for cloud formation, and fertilizing
ecosystems upon deposition2–4. Consequently, changes in the
atmospheric dust loading have been hypothesized to produce a
substantial radiative forcing of the climate system5–7. The global
dust cycle is itself also highly sensitive to changes in climate8,9, as
evidenced by global dust deposition being several times larger
during glacial maxima than during interglacials10, and by the
large variability of the global dust cycle over the observational
record of the past 50 years6,11,12.

This sensitivity to past climate changes raises the question of
how the global dust cycle will respond to projected future climate
changes, and of whether the resulting dust–climate feedback will
oppose or enhance those climate changes. However, past assess-
ments of the dust cycle response to future climate changes have
yielded divergent results, and there is no consensus on whether
the dust–climate feedback will enhance or oppose future climate
changes8,13–15. Indeed, an accurate quantification of the
dust–climate feedback is hindered by several uncertainties,
including in future changes to wind and precipitation
patterns11,16, the effect of CO2 fertilization on desert extent14,15,
the dust radiative effect in the present climate1, and the empirical
nature of dust emission parameterizations in global circulation
models17. These parameterizations generally use so-called pre-
ferential dust source functions that tune emissions to better
reproduce the present climate’s dust cycle18–20. Since these source
functions are invariant to climate, whereas the geological record
shows that source regions are quite sensitive to climate6,10, using
a source function in simulations of the dust cycle’s response to
future climate change could produce large systematic errors21.

Although interactions between climate and the global dust
cycle remain highly uncertain, recent advances now permit an
order-of-magnitude estimation of the direct dust–climate feed-
back. In particular, a physically based dust emission scheme can
now reproduce the global dust cycle without the use of an
empirical source function17,21. Furthermore, the coupling of the
nitrogen and carbon cycles in climate models22 has enabled
nitrogen limitation to more realistically constrain the effects of
CO2 fertilization on desert extent23. Finally, recent work has
constrained the dust direct radiative effect (DRE) in the present
climate1.

Here, we leverage these advances in order to estimate the direct
dust–climate feedback. We do so by using a simple theoretical
framework that combines constraints on the dust DRE1 with
model simulations of how that DRE is distributed regionally, and
with a series of climate model results on the response of the
change in global dust loading in response to future climate
change. A subset of these simulations use both coupled
carbon–nitrogen cycles22,24 and the more physically based dust-
emission parameterization that does not require a source
function17,21. We find that the global direct dust–climate feed-
back is of the order of a percent of the total physical feedbacks in
the climate system, and that it is approximately an order of
magnitude larger close to source regions, where it could play an
important role in shaping future climate.

Results
Theory of the dust–climate feedback. We first develop a theo-
retical framework for estimating the dust–climate feedback from
climate model simulations. Feedbacks in the climate system are
defined according to the equation:25,26

ΔR ¼ ΔF þ λΔT; ð1Þ

where ΔR (Wm−2) is the radiative imbalance at top-of-
atmosphere (TOA), ΔF (Wm−2) is the (instantaneous) radiative
forcing disequilibrating the Earth’s radiation budget (such as the
positive forcing due to increasing greenhouse gas concentrations),
and ΔT (K) is the change in the globally averaged surface tem-
perature. The climate feedback parameter λ (Wm−2 K−1) is then
defined as25,26

λ ¼ ∂R
∂T

: ð2Þ

For the dust–climate feedback, this change in the radiative
forcing ð∂RÞ corresponds to the change in dust radiative effects
that occurs per unit change in the globally averaged surface
temperature ð∂TÞ. Dust affects Earth’s radiative balance directly
through interactions with radiation, termed the direct radiative
effect (DRE), and indirectly through interactions with clouds,
biogeochemistry, and the cryosphere2,3. These indirect effects are
poorly understood, with large and poorly quantified
uncertainties2,3. We therefore restrict our discussion to the direct
dust–climate feedback arising from changes in the dust direct
radiative effect only, which is better understood and has a better
quantified uncertainty1.

A change in global dust loading changes the dust DRE, which
constitutes a radiative forcing. Since the dust DRE is approxi-
mately linear in the global dust loading1,6, the dust direct
radiative forcing at TOA relative to the present-day climate, Δζ,
can be approximated as:

Rdust tð Þ ¼ Δζ tð Þ � ζ0
L tð Þ � L0

L0
; ð3Þ

where L(t) is the global dust loading at a future time t, and L0 is
the present-day dust loading. Furthermore, ζ0 is the dust DRE in
the present-day climate, which was recently constrained to a
median value of −0.20Wm−2 with a 95% confidence interval (CI)
of −0.48 to +0.20Wm[−2 1. Combining Eqs. (2) and (3) then
yields the global direct dust–climate feedback as

λdust � ∂Rdust tð Þ
∂T tð Þ ffi ζ0

ΔL tð Þ=L0
ΔT tð Þ � ζ0κ; ð4Þ

where we defined κ � ΔL=L0
ΔT as the fractional change in the global

dust loading per degree global surface temperature change.
The direct dust–climate feedback is likely to be substantially

larger near source regions than it is on a global basis. We
therefore also quantify the regional direct dust–climate feedback
~λdust
� �

as the regional change in the dust DRE Δ~ζ
� �

per unit
globally averaged surface temperature change (ΔT), where the
tilde denotes a regional value at longitude θ and latitude ϕ. Using
Eq. (4), this can be written as

~λdust θ;ϕð Þ ¼ ~ζ0 θ;ϕð Þ~κ θ;ϕð Þ: ð5Þ

Note that some previous studies have defined the regional
feedback relative to the local temperature change26. Since aerosols
are largely advected from upwind locations, and since aerosol
feedbacks do not arise from a local thermodynamic response,
there is less causal relation between temperature and aerosol
loading at a given location. Consequently, defining the regional
feedback relative to the local temperature change would not
capture the physical processes (e.g., upwind changes in wind
speed, vegetation, soil moisture, and precipitation) that ultimately
drive local changes in aerosol concentration and radiative effects.
We have therefore defined the regional direct dust–climate
feedback as relative to the change in global surface temperature.
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Equation (5) should thus be interpreted as the change in the
regional energy balance induced by the response of dust aerosol
loading to global climate changes, for which changes in the
globally averaged surface temperature serves as a proxy.

Considering the divergence between simulations of the global
dust cycle response to climate changes5,13,14,27, and the inability
of most models to reproduce historical changes in regional dust
loading27, the skill of current models in predicting future changes
in dust content at a specific location can be considered very
limited. Therefore, we simply take the local change in dust
loading per degree globally averaged surface temperature change
as equal to its global value (i.e., ~κ θ;ϕð Þ ffi κ). The spatial
variability in the calculated ~λdust (Eq.(5)) will thus be driven by
variability in ~ζ0 θ;ϕð Þ, the regional dust DRE in the present
climate, which we determine by combining constraints on the
global dust DRE1 with an ensemble of four climate model
simulations of how that DRE is distributed regionally (see
Methods). The regional enhancement of the direct dust–climate
feedback over its globally averaged value is then,

~Eλ θ;ϕð Þ ¼ ~ζ0 θ;ϕð Þ=ζ0: ð6Þ

Climate model simulations. In order to estimate the direct
dust–climate feedback using the framework above, we need to
quantify the change in dust loading per degree globally averaged
surface temperature change (κ). We do so using an ensemble of
the subset of simulations from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) that included prognostic
treatments of dust aerosols28,29 (see Methods). However, these
simulations have three important limitations. First,
CMIP5 simulations include projected future land use changes,
such that it is not clear which part of the simulated dust loading
change is due to land use changes, which are considered
anthropogenic emissions and thus a radiative forcing30, and
which part is due to the response of the dust cycle to climate
changes, which gives rise to the dust–climate feedback. Second,
the ability of many CMIP5 models to project future dust cycle
changes is limited by their use of empirical dust emission para-
meterizations to parameterize the spatial variability of dust
emissions21. Third, although many CMIP5 models are able to
reproduce important features of the historical warming trends31,
CMIP5 models have not been shown able to reproduce historical
trends in dust loading without forcing changes in dust sources6,27,
such that the usefulness of CMIP5 simulations in forecasting the
dust cycle’s response to future climate changes is uncertain11.

To address these limitations of CMIP5 simulations in
estimating κ, we perform additional simulations with the
Community Earth System Model (CESM). For these simulations,
we (i) set future land use equal to that of the present day to isolate
the dust cycle’s response to climate change21, (ii) use a recent
physically based dust emission scheme that does not require a
source function17, and (iii) evaluate whether the model can
reproduce past changes in dust emissions. We describe these
CESM simulations in detail in the Methods section, and
summarize them here briefly. We conducted three simulations
with both the default (BASE) CESM dust emission module19 and
the more physically based (PHYS) dust emission model of Kok
et al.17, for a total of six simulations. This new emission scheme,
hereafter referred to as K14, has been shown to both better
reproduce small-scale dust emission measurements17 and to
better reproduce dust AOD retrievals when implemented in
CESM (see ref. 21 and Supplementary Fig. 1). Two of the three
simulations with each dust module were driven by reanalysis
meteorology, and were used to test the model’s ability to
reproduce historical changes in dust emissions, as captured by

two data sets that serve as a proxy for dust emission. The first
data set is a satellite-derived long-term record of dust aerosol
optical depth (AOD) off the West African coast around Cape
Verde. Dust AOD in this region is dominated by the main dust
plume blowing across the Atlantic Ocean from North Africa, and
is thus a proxy for the intensity of North African dust
emissions32. Our second data set consists of measurements of
AOD from the AERONET network of ground-based sun
photometers33, namely at eight stations near dust source regions
for which long–term changes in AOD are due to changes in
dustiness (see Methods). The third simulation used the land
component of CESM, the Community Land Model (CLM)24, to
simulate the response of the global dust emission rate to future
climate changes, which we use as a proxy for global dust loading6,
and combine with Eqs. (4) and (5) to estimate the direct
dust–climate feedback (see Methods).

We found that CESM’s BASE dust module substantially
underestimates both the AOD off the West-African coast, and
its relative rate of decline over the past few decades (Fig. 1a),
although this is somewhat sensitive to which reanalysis meteor-
ology data set is used34. Using the PHYS dust module with the
physically based K14 emission scheme helps to resolve both these
problems. First, the magnitude of the dust AOD is brought in
better agreement with measurements, because the K14 scheme
shifts emissions to the more erodible regions in Western Africa
(Figs. 3, 4 in ref. 21), which results in a greater dust AOD over the
tropical North Atlantic. Second, CESM with the PHYS module
better captures the historical decline in dust AOD since the 1980s,
which is likely largely due to a historical decrease in wind speed
over the North African source regions11 (Supplementary Fig. 3).
CESM’s improved performance with the PHYS module is thus
likely due in part to a more accurate representation of Western
Africa source regions, as well as possibly due to improvements in
the scaling of dust emissions with wind speed, and the increased
sensitivity of dust emissions to climate changes (particularly due
to changes in soil moisture) in K14.

The comparison of CESM simulations against AERONET
measurements shows that the BASE dust module has limited skill
in reproducing observed long-term trends (Supplementary Fig. 1),
producing a correlation coefficient of 0.50 between measured and
modeled long-term trends (Fig. 1b). Using the PHYS dust module
improves the simulated long-term trend at most stations,
resulting in an improved correlation coefficient of 0.83.

These results suggest that CESM’s PHYS dust module produces
improved skill in capturing observed long-term changes in dust
emissions, when forced by reanalysis meteorology, which
provides some limited confidence in simulations of future
changes in the global dust emission rate (see Methods for
remaining important limitations on the model simulations). The
future simulations forecast an increase in the global dust emission
rate (Supplementary Fig. 4), which is driven by two factors. The
first factor is a slight increase in wind speed over most North
African dust source regions, which is within the range of
CMIP5 simulation results (Fig. 3b in ref. 11), although the mean
of CMIP5 simulations predicts a slight decrease in dust emissions
due to North African wind speed changes. The second factor is a
decrease in soil moisture in almost all source regions16,35

(Supplementary Fig. 5), and particularly at the margins of the
major African and Asian source regions. Furthermore, the
enhanced sensitivity of the K14 dust emission parameterization
to the soil state causes regions with substantial changes in soil
moisture to show larger differences in the response of the dust
flux between the old and the new parameterizations. Conse-
quently, CESM with the PHYS emission module predicts an
enhanced sensitivity of the dust cycle to future climate changes
(Fig. 2). That is, we find that the increase in the global dust
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emission rate in response to climate changes almost doubles
relative to the simulation with the BASE emission module, from
+14 to +24% for a surface temperature change of ~3 K
(corresponding to the period 2076–2100 relative to 1976–2000).

Estimation of the direct dust–climate feedback. We use the
CMIP5 and CESM simulations to estimate the value of κ, which
we then combine with constraints on the dust DRE1 to estimate
the direct dust–climate feedback. For the CMIP5 simulations,
we find a wide distribution of κ values, with a median of
0.013 K−1 and a 95% confidence interval (CI) spanning from
−0.053 to 0.073 K−1 (Fig. 3). Although the majority (14 out of 18)
of models predict an increase in future dust loading,
CMIP5 simulations include land use changes36, which we are
unable to correct for and which skews κ to more positive values.
The contribution of these land use changes to simulated future
dust loading changes will depend on many factors, including the
details of each model’s dust emission parameterization. However,
an analysis by Ward et al.30 suggested that future land use
changes will increase dust emissions by ~6% by the end of the
century under the RCP8.5 scenario. Since this is similar to the
median dust loading changes predicted by the CMIP5 model
ensemble29, it remains unclear from the CMIP5 simulations
whether dust loading will increase or decrease in the future.

In contrast to the ensemble of CMIP5 simulations, the CESM
simulations do not include land use changes, such that the
simulated future changes in the global dust emission rate arise
from changes in climate and CO2 concentration. The CESM
simulation with the BASE emission module yields κ = 4.3± 0.3%
K−1 (2σ), which is within the 95% CI of the dust cycle response to
climate changes simulated by the CMIP5 ensemble (Fig. 3).
However, CESM with the PHYS dust emission module yields κ =
7.7± 0.4% K−1, which exceeds the 95% CI of the CMIP5
ensemble.

We combined these simulated values of κ with constraints on
the present–climate dust DRE (see Methods) in order to estimate
the order of magnitude of the global direct dust–climate feedback
λdust in Eq. (4). For the CMIP5 ensemble, the wide probability
distribution of κ yields a correspondingly wide distribution for the
direct dust–climate feedback: λdust = −0.001 (−0.023±0.013)Wm
−2 K−1 (Fig. 4a). CESM with the BASE dust module yields λdust =
−0.007 (−0.023 to +0.009) Wm−2K−1, which is again consistent
with the range suggested by the CMIP5 simulations. In contrast,
using the more physically based K14 dust module enhances the
dust cycle response to future climate change (Figs. 2, 3), and thus
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Fig. 1 Comparison of CESM simulations against historical long-term
changes in dust aerosol optical depth. a Shown is the AVHRR satellite
record of annually averaged dust AOD (black line and squares) over the
dust-dominated region of 10–20°N and 20–30°W, off the West-African
coast27,32. The CESM simulation with the BASE dust emission module (blue
line and circles) poorly reproduces the magnitude and historical trend of
the dust AOD, whereas CESM with the PHYS emission module (green line
and triangles) better reproduces both the magnitude of the dust AOD and
its long-term trend. The slope of the least-square linear fit lines (dashed
lines) are −0.047 ± 0.011 per decade (corresponding to −13 ± 3% per
decade) for the AVHRR data, −0.017 ± 0.005 per decade (corresponding
to −9 ±2% per decade) for the BASE-AVHRR simulation, and −0.045 ±
0.010 per decade (corresponding to −14 ±3% per decade) for the PHYS-
AVHRR simulation. b Shown are the modeled long-term trends in AOD
with the BASE and PHYS emission modules, compared against the
measured trends at eight AERONET stations (see Supplementary Figs. 1
and 2 for results from the individual stations) for which these long-term
changes are dominated by changes in dust aerosols (see Methods). The
size of the symbols is proportional to the number of years of data for each
station, and error bars were obtained from least-squares fitting of the
modeled annually averaged AOD at each site. For both panels, r denotes
the Pearson correlation coefficients between the measured and modeled
long-term trend in the annually averaged AOD
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yields a larger direct dust–climate feedback of −0.013 (−0.041 to
+0.016) Wm−2K−1 (Fig. 4a), which is partially outside of the
range suggested by the CMIP5 simulations. These three estimates
of the direct dust–climate feedback are themselves a sum of
opposing feedbacks, due to changes in cooling interactions with
SW radiation and warming interactions with LW radiation. We
find that the feedback due to only SW cooling interactions is in
the range of −0.06 to +0.02Wm−2K−1 (Fig. 4b), whereas that due
to counteracting LW warming is approximately half that at −0.01
to +0.03Wm−2K−1 (Fig. 4c).

Close to source regions, the regional feedback ~λdust is
substantially greater than the globally averaged direct
dust–climate feedback. We estimate ~λdust by combining our
estimates of κ with an ensemble of climate model simulations of
how the global dust DRE1 is distributed across the globe (see
Methods and Supplementary Figs. 6, 7). We find that the regional
direct dust–climate feedback is enhanced over its globally
averaged value (Eq.(6)) by about an order of magnitude close
to major source regions, including in Northern Africa, the Sahel,
the Mediterranean region, the Middle East, and Central Asia
(Supplementary Fig. 8). However, the value of ~λdust, and even its
sign, is highly uncertain, owing to large uncertainties in κ (Fig. 3),
the global dust DRE1, and in how that global DRE is distributed
across the globe (Supplementary Fig. 6). Figure 5 provides an
estimate of that large uncertainty by showing the regional
dust–climate feedback obtained from the median value of κ from
the CMIP5 ensemble (Fig. 5a), its lower CI (Fig. 5b), its upper CI
(Fig. 5c), and from the CESM simulation using the PHYS module
(Fig. 5d). Despite the large uncertainty in ~λdust, we find that its
magnitude is likely of the order of one to several tenths of Wm
−2K−1 close to source regions.

Discussion
By combining constraints on the global dust DRE with a series of
simulations of the global dust cycle’s response to climate changes
(Fig. 3), we find that the global direct dust–climate feedback lies
in the approximate range of −0.04 to +0.02Wm−2K−1 (Fig. 4a).
This suggests that the direct dust feedback is of the order of 1% of
the climate system’s ~2Wm−2K−1 of total physical feedbacks25.
Moreover, dust might account for a substantial fraction of the
direct climate feedback of approximately −0.02 to −0.09Wm−2K
−1 from all aerosols4,29. The sign of the global direct dust–climate
feedback remains unknown, both because it is unclear whether
dust emissions will increase or decrease in response to future
climate changes (Fig. 4), and because the sign of the dust DRE
remains uncertain1.

Our results indicate that the sign and magnitude of the direct
dust–climate feedback varies greatly on regional scales (Fig. 5).
This occurs in part because of large spatial variability in dust
loading, and in part because the global dust DRE is the sum of
counteracting cooling and warming effects that are both modu-
lated by a variety of factors. Dust cooling effects arise from
scattering of SW radiation, which dominates for fine dust and is
enhanced over dark surfaces37. In contrast, dust warming effects
arise from scattering of LW radiation and absorption of SW and
LW radiation1. These warming effects dominate for coarse dust
and are enhanced over bright surfaces and for high altitude dust
layers1,37. The dependence of the radiative effects on particle size
causes the fining of the dust size distribution during long-range
transport to produce a gradual shift from warming interactions to
cooling interactions. However, this effect is often overwhelmed by
the coincident shift from high albedo deserts close to source
regions to low albedo ocean and vegetated surfaces further from
source regions (Fig. 5 and Supplementary Fig. 6). Indeed, we find
that the regional direct dust–climate feedback over very bright
surfaces (the high albedo deserts of North Africa and the Middle
East, and ice or snow-covered regions) is of opposite sign to that
over dark surfaces (primarily oceans and vegetated regions)
(Fig. 5 and Supplementary Figs. 6, 7). This causes the dust DRE
and climate feedback to display a dipole pattern between the
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highly reflective deserts of North Africa and the Middle East, and
their surrounding oceanic and vegetated regions. This dipole does
not emerge for other source regions, such as the Australian and
Chinese deserts, because those source regions are less reflective.
In addition to these regional variations in its sign, the magnitude
of the direct dust–climate feedback is greatly enhanced close to
source regions, where dust loading is much greater than the
global average (Supplementary Fig. 8). In particular, we find that
the direct dust–climate feedback is of the order of one to several
tenths of a Wm−2K−1 in North Africa, the Sahel, the Mediterra-
nean, the Middle East, and Central Asia (Fig. 5).

These results suggest that the direct dust–climate feedback will
play an important role in shaping the future climate near major
source regions, as has likely occurred in the past38. In idealized
modeling experiments, the equilibrium surface and atmospheric
temperature response to dust direct radiative forcing scales with
the TOA forcing39. Thus, the direct forcing patterns in Fig. 5a and
d imply enhanced surface and atmospheric warming over the
Saharan and Arabian deserts, where there is already an amplified
response to global warming40. Over water, the cooling is strongest
in the tropical North Atlantic and over the Arabian Sea. In the
North Atlantic, the meridional asymmetry in the forcing would
likely excite a coupled response—the Atlantic Meridional Mode
—resulting in a southward shift of the Intertropical Convergence
Zone, thus weakening the West African Monsoon41. This forced
change in the Atlantic Meridional Mode42 and the increased dust
loading43 would both conspire to inhibit tropical cyclone for-
mation and intensification over the North Atlantic. Over the
Arabian Sea, the dust forcing would weaken the climatological
northward meridional sea surface temperature (SST) gradient and
amplify the cooling associated with absorbing aerosols emitted
from the Indian Subcontinent, weakening the monsoonal circu-
lation and possibly improving conditions for the formation of
very strong tropical cyclones there41. The warming over the
Sahara would increase the land-sea temperature gradient, which
could strengthen the summer monsoon’s northward penetration
into the continent43. Indeed, it is thought that the enhanced
rainfall of the African Humid Period (AHP), which was a period

of 15–5 kyr BP when the Sahara was almost completely vegetated
and supported perennial lakes, was the result of orbital forcing
that similarly enhanced the land-sea temperature gradient44.
However, studies have also shown that the enhanced monsoonal
rainfall of the AHP was also encouraged by a reduction in the
concentration of dust over the continent45, as heating by an
elevated dust layer reduces rainfall by increasing atmospheric
static stability44. Thus, the impact on the West African Monsoon
may be a balance between the partitioning of dust atmospheric
heating and surface forcing.

Our results distinctly include the possibility that dust loading
might increase in response to future warming (Fig. 3). This would
be opposite to the response inferred from paleoclimate, since
colder climates tend to be dustier over the last million years (e.g.,
the last glacial maximum is substantially dustier than the mid-
holocene warm period)7,9,10,38. This discrepancy suggests either
that feedbacks relevant on longer geologic timescales are different
than the feedbacks acting on the century timescale modeled here,
or that the feedbacks are sensitive to the initial state as indicated
by ice core dust records9, and thus that the dust–climate feed-
backs over the coming decades to centuries is not well con-
strained by paleoclimate feedbacks over the last million years.

Although it remains an open question whether global dust
loading will increase or decrease in the future, our results suggest
that current climate models might underestimate the dust cycle’s
response to climate change. In particular, we find that accounting
for the additional physics included in the K14 emission scheme
enhances the sensitivity of the dust cycle to climate changes,
which might have contributed to an improved ability to repro-
duce observed long-term changes in dust AOD (Fig. 1). Specifi-
cally, the K14 parameterization accounts for the increase in the
emitted vertical dust flux per unit of horizontal saltation flux that
occurs when soils become more erodible, which for instance
arises from the predicted future drying of soils on most deserts
margins16,35 (Supplementary Fig. 5). The net effect of accounting
for this and other additional physics is a near-doubling of the
increase in dust emissions per degree surface temperature change
(Fig. 2), causing it to exceed the range spanned by CMIP5 models
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Fig. 5 Estimates of the regional direct dust–climate feedback. a–c show the direct dust–climate feedback ~λdust
� �

obtained using the median, the lower 95%
CI, and the upper 95% CI of the global dust loading response to surface temperature change (κ) from CMIP5 simulations, respectively. d shows ~λdust using
κ from the CESM simulation with the PHYS emission module. Since the probability distribution of κ derived from the CMIP5 simulations spans both
negative and positive values, the sign of the dust climate feedback in b is opposite that of the other panels. These results thus indicate both the large
uncertainty in ~λdust, and that its value could be substantial near source regions
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(Fig. 3). This result suggests that empirical dust emission para-
meterizations in current climate models, which do not account
for the increase in dust emissions per unit saltation flux that
occurs as soils become more erodible, and instead generally use
dust source functions to parameterize spatial variability in
emissions18,21, might cause some models to underestimate the
response of the global dust cycle to climate changes.

The uncertainty in the response of the global dust loading to
future climate changes contributes to large uncertainties in the
direct dust–climate feedback on both global and regional scales
(Figs. 4, 5). Although our methodology quantifies and propagates
this uncertainty, it has a number of important limitations that
nonetheless likely cause a substantial underestimation of the
uncertainty in the direct dust–climate feedback (see Methods).
This arises because the direct dust–climate feedback depends on a
wide range of processes in the Earth system, many of which
remain uncertain13–15, and this study is able to quantify the
uncertainty for only a subset of these processes (see Methods).
Furthermore, the model projections of future dust loading
changes (Fig. 4) might be affected by large biases in representing
one or more of the processes that drive changes in the dust cycle,
which are not quantified by the uncertainties propagated here.
The presence of such biases is indicated by the inability of CMIP5
models to reproduce historical changes in dust27, even when
forced by observed SSTs, although this discrepancy might be
partially due to inaccuracies in representing the evolution of land
use changes, which are difficult to quantify46.

Our study focuses on the feedback due to direct radiative
interactions only. As such, it does not address the many indirect
effects that contribute to the dust–climate feedback, and which
could potentially be of substantially greater magnitude than the
direct dust–climate feedback3,47. In particular, future studies
should account for the effects of dust interactions with clouds
(especially ice clouds), biogeochemistry, and the cryosphere.
Interactions with biogeochemistry likely result in a drawdown of
CO2 and thus produce a net cooling effect6, whereas dust-
cryosphere interactions warm by decreasing the surface albedo2.
Dust interactions with clouds induce a variety of indirect effects
with opposing signs, such that it remains unclear whether dust-
cloud interactions warm or cool the Earth system3,47,48. This lack
of quantitative understanding of dust indirect effects is especially
problematic for understanding dust–climate feedbacks at high
latitudes, where dust–cryosphere and dust–cloud interactions are
likely to dominate over direct radiative effects49. Overall, a sub-
stantial body of further research is needed to reduce the uncer-
tainty on the magnitude and the sign of the dust–climate feedback
on both global and regional scales.

This paper provided the first explicit estimation of the
dust–climate feedback due to changes in the direct radiative
effect. We did so by using a simple theoretical framework for the
direct dust–climate feedback (Eq. 4) that combines recent con-
straints on the global dust DRE1 with a series of model simula-
tions of the dust cycle’s response to climate changes. A subset of
these simulations used a recent physically explicit dust emission
parameterization17, which increased model skill in reproducing
past changes in dust emissions (Fig. 1), thereby lending some
limited confidence in predictions of the dust cycle response to
future climate changes (Fig. 2). A major advantage of our
approach over simply using ensembles of climate model results is
that it allows for both the explicit inclusion of experimental and
observational constraints on dust properties and abundance1, and
the propagation of many (but not all; see Methods) of the
uncertainties that affect the direct dust–climate feedback (Figs. 3,
4). Our results suggest that global dust loading could change by
about −5 to +10% per degree of globally averaged surface tem-
perature increase (Fig. 3), resulting in a global direct dust–climateT
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feedback in the range of −0.04 to +0.02 Wm−2K−1 (Fig. 4). As
such, the global direct dust–climate feedback is likely of the order
of one percent of the total physical feedbacks in the climate
system25, and could account for a large fraction of the total
aerosol feedbacks29. Since the direct dust–climate feedback can be
enhanced by over an order of magnitude close to source regions
(Fig. 5), it could play an important role in shaping the future
climates of North Africa, the Mediterranean, the Sahel, the
Middle East, and Central Asia.

Methods
CMIP5 simulations of future changes in global dust loading. We used
CMIP5 simulations28, driven by the RCP8.5 scenario36, of the relative change in
the global dust loading for the period 2090–2099 versus 2006–2015 (Table S1 of ref.
29). We obtained κ, the relative change in global dust loading per degree surface
temperature change, by normalizing these values by the temperature change over
this period (Robert Allen, personal communication, 2017). This yielded 18 values
of κ, from which we calculated the probability density function (black line in Fig. 3)
using kernel density estimation with a Gaussian kernel with standard smoothing
parameter following Eq. (3.31) in Silverman50.

CESM simulations of climate-induced dust changes. Dust emissions in CESM
are calculated by the CLM. We used CLM version 4.0, extended with a
carbon–nitrogen biogeochemical model (CLM4-CN)24. To calculate dust emis-
sions, the three BASE simulations (Table 1) used CLM’s default dust flux
parameterization8,19, which uses a preferential dust source function51 to calculate
the total dust emissions.

The three PHYS simulations instead used the more physically based dust
emission parameterization K1417 (Table 1), which has a number of improvements
over previous parameterizations. First, K14 accounts for the increasing scaling of
dust flux with wind speed that occurs when a soil becomes less erodible (i.e., its
threshold friction velocity u*t increases), which in CLM is primarily due to changes
in soil moisture. Second, K14 explicitly accounts for the increase in dust emission
efficiency that occurs as a soil becomes more erodible. That is, if a soil’s u*t
decreases, for instance due to a decrease in soil moisture, it will on average increase
the amount of dust emitted per unit of horizontal saltation flux because dust
aggregates in the soil will generally (but now always) be less strongly bound. Since
this improvement increases the sensitivity of emissions to u*t, it shifts those
emissions to the world’s most erodible regions, where u*t is lowest. This eliminates
the need to use a source function to shift emissions to those regions, at least in
CESM21. The fact that K14 does not require a source function is an important
advantage, because using a source function to parameterize the spatial variability of
dust emissions limits a model’s ability to capture changes in dust emissions in a
climate that differs from that for which the source function was obtained21. These
improvements cause the K14 parameterization to produce better agreement with
small-scale dust emission measurements, although substantial differences remain17.
Furthermore, when implemented in CESM, K14 improves agreement with the
global pattern of dust AOD as measured by AERONET sun photometers21.

For both dust modules, the effects of soil moisture on the dust emission
threshold friction velocity, u*t, follows the parameterization of Fécan et al.52, the
accuracy of which was evaluated for CESM in ref. 21. Note that this treatment
differs from the default CESM parameterization, which also uses Fécan et al.52, but
uses a tuning parameter introduced in ref. 19 that practically eliminates the
sensitivity of dust emissions to soil moisture in CESM. Restoring the Fécan et al.52

parameterization to its original form also improves model agreement with the
spatial distribution and seasonal and daily variability of AERONET AOD
measurements21. Furthermore, using the original Fécan et al.52 soil moisture
sensitivity causes CESM to better reproduce historical changes in dust AOD (not
shown).

In addition to wind speed and soil moisture, dust emissions are also affected by
the presence of vegetation. The dust emission flux in CESM is parameterized to
decrease linearly with the leaf area index (LAI), going to zero at a threshold LAI of
0.36. Future and historical simulations are driven with land cover that is
representative of the year 2000. As such, although seasonal and climatic changes in
LAI are prognostically modeled in CLM4-CN, this model does not account for
possible changes in the biogeography due to changes in land use or climate. We
chose this approach because historical changes in the West African dust plume
(Fig. 1a) are driven almost entirely by changes in wind speed11, and because
estimating the dust climate feedback requires the isolation of the dust cycle’s
response to changes in climate (see discussion in main text).

For both the BASE and the PHYS dust emission models, we ran two separate
CESM simulations to evaluate the model’s ability to reproduce historical changes in
dust emissions. The first pair of simulations, BASE-AVHRR and PHYS-AVHRR,
model the global dust cycle over the historical period 1980–2008, with the objective
of evaluating the model’s ability to reproduce the historical trend in aerosol optical
depth (AOD) over the tropical North Atlantic ocean, derived from the long-term
AOD record obtained by the Advanced Very High Resolution Radiometer
(AVHRR)32. The second pair of simulations, BASE-AERONET and PHYS-

AERONET, model the global dust cycle over the historical period 1995–2011 with
the objective of evaluating the model’s ability to reproduce long-term trends in
AOD measurements by AERONET stations. The BASE-AERONET and PHYS-
AERONET simulations have been described in detail in ref.21, and the BASE-
AVHRR and PHYS-AVHRR simulations use the same model set-up, with the
modifications described above. All four simulations used CESM version 1.153, and
the first year of each simulation was used as model spin-up and not used for
analysis.

In both pairs of simulations, the dust emissions calculated by CLM4-CN were
used by CESM’s atmosphere model, the Community Atmosphere Model version 4
(CAM4), to calculate the three-dimensional transport and deposition of dust, as
well as the dust aerosol optical depth8,54. To do so, CAM4 distributes the emitted
dust into four size bins between 0.1 and 10 μm diameter following a size
distribution parameterization based on brittle fragmentation theory55. This
parameterization is in good agreement with a wide range of measurements2 and
does not depend on the wind speed at emission, which is consistent with
measurements56. The optical properties for each bin are specified as in ref.54.
CAM4 accounts for dry and wet deposition of dust and includes the effects of other
aerosol species.

The simulations used the capability of CESM to be forced with reanalysis winds
instead of predicted winds. Specifically, the BASE-AVHRR and PHYS-AVHRR
runs used the MERRA reanalysis meteorology from the Goddard Earth Observing
System of the NASA Global Modeling and Assimilation Office (see https://gmao.
gsfc.nasa.gov/reanalysis/MERRA/), which extends back to the start of the AVHRR
record in 1982. However, the use of the ERA-Interim reanalysis meteorology57,
which only extended back to 1989 and could thus not be used for the AVHRR runs,
results in more realistic dust emissions58. Therefore, the BASE-AERONET and
PHYS-AERONET simulations used the ERA-Interim reanalysis. However, instead
using the MERRA reanalysis similarly yields a better agreement of the PHYS-
AERONET simulation against the AERONET data than does the BASE-
AERONET simulation.

For each simulation, the global tuning parameter that scales the dust emissions
was set in such a way that it eliminates the bias with AERONET AOD
measurements in dusty regions21.

Observations to evaluate modeled dust emission changes. We used the results
of the two pairs of historical simulations to evaluate the ability of the new K14 dust
emission scheme to reproduce past changes in dust emissions. We thus focused this
evaluation on measurements close to dusty regions, in order to have confidence
that observed and modeled changes are largely due to changes in dust emissions,
and not due to changes in circulation patterns or depositional processes. As such,
we compared the simulations against satellite-derived estimates of dust optical
depth off the West African coast around Cape Verde27. Since this record extends
back to 1982, it allows us to test whether the model reproduces variability in dust
emissions from the world’s main source region over the past several decades, when
forced by winds from reanalysis meteorology.

We also compared the simulations against long-term changes in AOD at eight
AERONET stations33 for which such long-term changes were dominated by
changes in dust. That is, we selected AERONET stations that both have long data
records, and for which we can be confident that long-term changes in AOD are due
to changes in dust, as opposed to changes in other aerosols. We therefore selected
stations with at least 5 years for which an annual mean AOD can be defined,
subject to the further quality control criteria below. Since smaller values of the
Angstrom exponent α indicate coarser aerosols1,2, we use measurements of α in the
440–870 nm wavelength range to select stations for which long-term AOD changes
are due to dust. This can be indicated either by (i) very low values of α, indicating
that AOD is overwhelmingly due to dust, such that changes in AOD are very likely
due to changes in dust, or (ii) by increases in AOD being associated with a
coarsening of aerosols and thus a decrease in α. Correspondingly, we selected
stations that either have a very low Angstrom exponent, α< 0.4, or for which the
majority of the variance in dust AOD is explained by changes in the Angstrom
exponent, as quantified by a correlation between α and AOD of r< −0.70. To
exclude the possibility that changes in other coarse aerosols, notably sea salt, are
driving changes in AOD, we further only use stations for which over 75% of the
AOD is due to dust, based on the simulations reported in Kok et al.21.

The above procedure resulted in the selection of eight AERONET stations with
long-term trends driven by changes in dust: five in North Africa, one in the North
Atlantic, and two in the Middle East. We processed the data at each of these
stations to obtain the annually averaged AOD, and to remove the effects of changes
in the exact days on which AOD was measured between years at a given site. First,
we calculated the monthly averaged AOD for months with at least 5 days of data.
For this, we used the daily averaged level 2.0 quality assured AOD (pre-field and
post-field calibrated and manually inspected), obtained from the Version 2 Direct
Sun Algorithm. We then used these monthly averages to calculate the seasonal
AOD cycle at each station from the average of all available monthly averaged AOD
values for each of the 12 months (see Supplementary Fig. 2). We then subtracted
this seasonal AOD cycle from each monthly averaged AOD to obtain the anomaly
in the AOD for each month. To obtain the annually averaged AOD for each year,
we then averaged this anomaly over all 12 months in a given year, and then added
this annually averaged AOD anomaly to the mean AOD obtained from averaging
over the seasonal cycle of AOD.
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We followed a similar procedure to calculate the annually averaged modeled
dust AOD for each site. That is, we used the simulated AOD at the exact days for
which measurements were available to first calculate the modeled monthly
averaged AOD, which we then averaged for each of the 12 months to obtain the
seasonal AOD cycle. We then subtracted this from each modeled monthly averaged
AOD to obtain the AOD anomaly, which was then averaged over all months in a
given year to obtain the modeled annually averaged AOD anomaly. We then
obtained the modeled annually averaged AOD by adding this anomaly to the mean
AOD obtained from averaging over the modeled seasonal AOD cycle. The resulting
comparison between measured and modeled AOD is plotted in Supplementary
Figure 1.

CESM simulations of dust response to future climate changes. The BASE-
future and PHYS-future simulations use CLM4-CN to simulate the response of the
global dust emission rate Q to climate changes until the year 2100. We forced
CLM4-CN with a preindustrial atmospheric CO2 concentration (285 ppmv) until it
reached equilibrium. Specifically, we cycled the first 25 years (1948–1972) of the
Qian et al.59 NCEP/NCAR reanalysis data set (temperature, precipitation, winds,
etc.), and repeated this procedure until the 25-year average of the net ecosystem
exchange fluxes fell below 0.05 PgC/year60. After CLM4-CN was spun up in this
manner, we conducted model experiments from the year 1798 until 1972 following
the procedure outlined in ref. 61. That is, we cycled the 1948–1972 Qian et al.59

reanalysis data, combined with historical reconstructions of CO2 concentration62,
nitrogen deposition63, and land cover change64. From 1973 onward, we forced the
model with the same 1948–1972 repeat cycle, but with climate anomalies added,
and with the CO2 concentration increasing following the SRES (Special Report on
Emissions Scenarios) A1B scenario. These climate anomalies were taken as the
average difference between the monthly mean of fully coupled simulations with the
ECHAM5/MPI-OM model65 and the 1948–1972 reanalysis, and are described in
more detail in ref. 61. The 25-year cycling of reanalysis data was done to create
realistic interannual variability in the simulated future climate, which is important
because of the non-linear dependence of dust emissions on wind speed, soil
moisture, and vegetation. We consequently report model results in terms of 25-year
running averages. We used output from ECHAM5, because Mahowald14 showed
that this model predicts changes in the global desert area that are characteristic of
the mean of the models that participated in Coupled Model Intercomparison
Project phase 3 (CMIP3). The ECHAM5 simulations were forced with the A1B
scenario, as part of the CMIP3. Since the historical reconstructions of nitrogen
deposition and land cover change only extend until 200563,64, and since we desired
to separate the response of the dust cycle to climate changes from other anthro-
pogenic changes such as land use, we kept nitrogen deposition and land use from
2006 onward constant at 2005 levels. Note that human land use changes can also
substantially impact dust emissions46. Since such changes are the direct result of
human actions, they constitute an anthropogenic forcing, not a feedback, and are
thus not included in our simulations. For both the BASE-future and PHYS-future
simulations, the global tuning constant for dust emissions was set such that the
global dust emission rate over the period of 1995–2011 equaled that for the same
period for the BASE-AERONET and PHYS-AERONET simulations, respectively,
for which the global tuning constant was calibrated to AERONET observations (see
above and ref. 21).

We used the BASE-future and PHYS-future simulations of the change in the
global dust emission rate to obtain κ. Specifically, we use the global emission rate as
a proxy for the global dust loading, such that we approximated κ as the relative
change in dust loading (ΔQ/Q0) per degree surface temperature change (ΔT),
which we obtained from the linear least-squares fits of ΔQ/Q0 to ΔT (Fig. 3). We
use this assumption because previous model simulations have indicated that the
modeled dust lifetime, which determines how the emission rate is converted to
loading, is relatively insensitive to climate6. Furthermore, uncertainties in other
components of the estimation of κ and λdust, such as due to uncertainties in future
precipitation change and the dust DRE, are quite large, such that uncertainties due
to possible changes in dust lifetime is likely to be a small contributor to the
uncertainty in κ.

Estimation of the direct dust–climate feedback. We estimated the global direct
dust–climate feedback by combining the CMIP5 and CESM estimates of κ (Fig. 3)
with the constraint on the present-day dust DRE (ζ0), and its SW (ζ0,SW) and LW
(ζ0,LW) components, from Kok et al.1. This recent study constrained ζ0 to −0.20
(−0.48 to +0.20) Wm−2 by combining an analysis of the size-resolved dust loading
with four climate model simulations of the radiative effect per unit dust aerosol
optical depth. We simplified these results as a normal distribution with mean and
standard deviation equal to those of the full DRE probability distributions given in
Supplementary Figure 5 of Kok et al.1, yielding ζ0 = −0.17 ± 0.19Wm−2, ζ0,SW =
−0.47 ± 0.19Wm−2, and ζ0,LW = +0.30±0.08 Wm−2. Combining these probability
distributions with that for κ (Fig. 3) then yielded the probability distributions of
λdust (Eq. 4 and Fig. 4).

We obtained the regional direct dust–climate feedback, ~λdust , by combining
estimates of κ (Fig. 3) with constraints on the regional dust DRE, ~ζ0. In turn, we
obtained ~ζ0 by combining the global dust DRE1 with an ensemble of four climate
model simulations66 of how that global dust DRE is distributed regionally.
Specifically, for each model i, we obtained the simulated present climate dust DRE

due to both SW and LW interactions for each modeled particle bin k as a function
of location. Since the dust DRE generated by a particle bin scales with that bin’s
dust AOD37, we multiplied each model bin’s SW and LW DRE with a
normalization factor αi,k that corrects the simulated globally averaged dust AOD
for that particle bin to the constraint on the globally averaged dust AOD obtained
in Kok et al.1. That is, the DRE due to SW ~ζi0;SW θ;ϕð Þ

� �
and LW ~ζi0;LW θ;ϕð Þ

� �
interactions for climate model i is calculated as:

~ζi0;SW θ;ϕð Þ ¼ 1
Np

XNp

p¼1

XNk;i

k¼1

αi;k~ζ
i
0;SW;k θ;ϕð Þ; ð7Þ

~ζ0;LW θ;ϕð Þ ¼ 1
Np

XNp

p¼1

XNk;i

k¼1

αi;k~ζ
i
0;LW;k θ;ϕð Þ; ð8Þ

where ~ζi0;SW;k θ;ϕð Þ and ~ζi0;LW;k θ;ϕð Þ are the DREs predicted by model i for particle
bin k at longitude θ and latitude ϕ, due to interactions with SW and LW radiation,
respectively, and Nk,i denotes the number of particle bins simulated by climate
model i. This calculation is averaged over a large number (Np = 104) of realizations
of the correction factor αi,k, which equals

αi;k ¼ τ̂d;k
τd;i;k

: ð9Þ

Here τd;i;k is the DAOD predicted by model i for particle bin k, and τ̂d;k is a
realization of the global DAOD due to particle bin k drawn from the probability
distribution obtained in ref. 1 (see their Figs. 2c and S1). The SW and LW DRE that
result from the above procedure are plotted in Supplementary Fig. 6 for each of the
four climate models used.

We then obtained the regional dust SW ~ζ0;SW
� �

and LW ~ζ0;LW
� �

DRE by
averaging over the SW and LW DRE obtained for each of the Ni = 4 climate model
simulations in the model ensemble66,

~ζ0;SW θ;ϕð Þ ¼ 1
Ni

XNi

i¼1

~ζi0;SW θ;ϕð Þ; ð10Þ

~ζ0;LW θ;ϕð Þ ¼ 1
Ni

XNi

i¼1

~ζi0;LW θ;ϕð Þ: ð11Þ

The resulting SW DRE, LW DRE, and total DRE ~ζ0 ¼ ~ζ0;SW þ ~ζ0;LW
� �

are
plotted in Supplementary Fig. 7, and are used in the calculation of the regional
direct dust–climate feedback (Eq.(5) and Fig. 5).

Limitations of the methodology. We list here the most important limitations of
our methodology that have not already been discussed in the main text. First, the
coarse resolution and incomplete description of the land surface handicaps climate
models in simulating dust emissions. This occurs in large part because dust
emission is a small-scale process that is sensitive to unresolved variations in both
(turbulent) winds and in soil properties such as size distribution, mineralogy, soil
moisture, and soil aggregation state67. Furthermore, dust emission can be triggered
by mesoscale meteorological events that also are not captured well in many
models68, such as haboobs and the breakdown of the nocturnal low level jet. These
limitations restrict the ability of models to reproduce the dust cycle even in the
current climate6,20,21, and thus adds substantial uncertainty to simulations of the
dust cycle in a future climate. Therefore, although we use an ensemble of climate
models to constrain κ, it is possible that climate models have systematic biases in
simulating dust cycle response to climate changes, which cannot be quantified here.
Second, the CMIP5 and CESM simulations do not account for changes in the dust
emission rate due to changes in source regions, other than those already captured
in its physically based scheme. That is, these simulations do not account for (i)
changes in (fluvial) sediment supply and thus erodibility of existing source regions,
and (ii) changes in biogeography, i.e., changes in biomes rather than changes in
LAI within a biome, which CESM does account for. Third, the simulated response
of the global dust cycle to climate changes is known to be highly sensitivity to both
the treatment of the response of vegetation to changes in climate and CO2 con-
centration, and to future changes in precipitation and surface temperature14,15.
Whereas the ensemble of CMIP5 simulations captures a range of possibilities for
both future changes in meteorology and vegetation response to changes in climate
and CO2, the CESM future simulations do not. That is, these simulations were
forced with atmospheric simulations that are close to the median of the CMIP3
climate model ensemble, and use only a single parameterization of vegetation
response to climate and CO2

24. Fourth, the CMIP5 and CESM simulations,
respectively, use the RCP8.5 and A1B scenarios, and we did not test the sensitivity
of the direct dust–climate feedback to the emissions scenario. Nonetheless, because
the direct dust–climate feedback is implicitly normalized by the surface tempera-
ture change, we expect differences in the direct dust–climate feedback between
scenarios to be substantially less than they would be for model calculations of dust
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radiative forcing. Fifth, the constraint on the dust DRE is subject to a number of
limitations. In addition to those already described in ref.1, recent measurements
indicate that LW interactions might be less important than previously thought69,
which could cause the dust DRE to be more cooling than represented in ref. 1.
Conversely, the lifetime of coarse dust might be underestimated in ref. 1, which
could have caused an underestimate of dust warming. In addition, the ensemble of
simulations of the dust direct radiative effect used in Kok et al.1 does not account
for regional heterogeneity in the mineralogy of dust, which likely has a limited
effect on the global DRE but does substantially affect the spatial pattern of the dust
DRE70. A final limitation of our methodology is that, although CESM with the
improved dust emission scheme and driven by ERA-Interim meteorology shows
some skill in reproducing past changes in dust emissions (Fig. 1), the drivers of
future changes in dust emissions are likely to differ from past ones. In particular,
past changes in North African dust emissions seem to be due primarily to changes
in wind speed over the Sahara11. However, future climate changes are expected to
be due to several factors, including changes in wind speed11, changes in desert
extent due to both increasing CO2 concentrations14 and likely decreases in soil
moisture in semi-arid regions16,35, and changes in erodibility of arid regions, such
as due to the decreases in soil moisture. Furthermore, since the meteorology in the
PHYS-AVHRR simulations is prescribed, it does not provide information on
whether CESM can correctly simulate relevant changes in wind, soil moisture, and
surface temperature in a future climate, which affect the resulting dust emission.
Indeed, CMIP5 models have been shown to be incapable of reproducing important
changes in North African dust in the current climate when forced by observed
SSTs27, which casts substantial doubt on their ability to accurately forecast future
changes in the dust cycle. The above limitations of our study suggest that our
methodology underestimates the uncertainty of the direct dust–climate feedback,
and thus should be seen as an order of magnitude estimate.

Code availability. The codes used to conduct the analysis presented in this paper
and in the production of the figures are available through Github (https://github.
com/jfkok/Koketal_DustClimateFeedback_NCOMMS2018_MatlabCode).

Data availability. CMIP5 data are available through the Earth System Grid (http://
pcmdi9.llnl.gov/).CESM model simulations used here are available through Zenodo
(https://zenodo.org/record/1124933), and the ensemble of global model simula-
tions of dust DRE used here are available from Ref.66.
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